Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.626
Filtrar
1.
PLoS Comput Biol ; 20(4): e1011990, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598551

RESUMEN

Prostate cancer is a heritable disease with ancestry-biased incidence and mortality. Polygenic risk scores (PRSs) offer promising advancements in predicting disease risk, including prostate cancer. While their accuracy continues to improve, research aimed at enhancing their effectiveness within African and Asian populations remains key for equitable use. Recent algorithmic developments for PRS derivation have resulted in improved pan-ancestral risk prediction for several diseases. In this study, we benchmark the predictive power of six widely used PRS derivation algorithms, including four of which adjust for ancestry, against prostate cancer cases and controls from the UK Biobank and All of Us cohorts. We find modest improvement in discriminatory ability when compared with a simple method that prioritizes variants, clumping, and published polygenic risk scores. Our findings underscore the importance of improving upon risk prediction algorithms and the sampling of diverse cohorts.


Asunto(s)
Algoritmos , Benchmarking , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/genética , Masculino , Benchmarking/métodos , Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Estudios de Cohortes , Factores de Riesgo , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo/métodos , Biología Computacional/métodos , Medición de Riesgo/métodos , Estudios de Casos y Controles , 60488
2.
PLoS One ; 19(4): e0298906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625909

RESUMEN

Detecting epistatic drivers of human phenotypes is a considerable challenge. Traditional approaches use regression to sequentially test multiplicative interaction terms involving pairs of genetic variants. For higher-order interactions and genome-wide large-scale data, this strategy is computationally intractable. Moreover, multiplicative terms used in regression modeling may not capture the form of biological interactions. Building on the Predictability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline to extract higher-order interactions from genomic data using tree-based models. The epiTree pipeline first selects a set of variants derived from tissue-specific estimates of gene expression. Next, it uses iterative random forests (iRF) to search training data for candidate Boolean interactions (pairwise and higher-order). We derive significance tests for interactions, based on a stabilized likelihood ratio test, by simulating Boolean tree-structured null (no epistasis) and alternative (epistasis) distributions on hold-out test data. Finally, our pipeline computes PCS epistasis p-values that probabilisticly quantify improvement in prediction accuracy via bootstrap sampling on the test set. We validate the epiTree pipeline in two case studies using data from the UK Biobank: predicting red hair and multiple sclerosis (MS). In the case of predicting red hair, epiTree recovers known epistatic interactions surrounding MC1R and novel interactions, representing non-linearities not captured by logistic regression models. In the case of predicting MS, a more complex phenotype than red hair, epiTree rankings prioritize novel interactions surrounding HLA-DRB1, a variant previously associated with MS in several populations. Taken together, these results highlight the potential for epiTree rankings to help reduce the design space for follow up experiments.


Asunto(s)
Epistasis Genética , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Herencia Multifactorial/genética , Modelos Logísticos , Polimorfismo de Nucleótido Simple
3.
Elife ; 122024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639992

RESUMEN

We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10-8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.


Scattered throughout the human genome are variations in the genetic code that make individuals more or less likely to develop certain traits. To identify these variants, scientists carry out Genome-wide association studies (GWAS) which compare the DNA variants of large groups of people with and without the trait of interest. This method has been able to find the underlying genes for many human diseases, but it has limitations. For instance, some variations are linked together due to where they are positioned within DNA, which can result in GWAS falsely reporting associations between genetic variants and traits. This phenomenon, known as linkage equilibrium, can be avoided by analyzing functional genomics which looks at the multiple ways a gene's activity can be influenced by a variation. For instance, how the gene is copied and decoded in to proteins and RNA molecules, and the rate at which these products are generated. Researchers can now use an artificial intelligence technique called deep learning to generate functional genomic data from a particular DNA sequence. Here, Song et al. used one of these deep learning models to calculate the functional genomics of haplotypes, groups of genetic variants inherited from one parent. The approach was applied to DNA samples from over 350 thousand individuals included in the UK BioBank. An activity score, defined as the haplotype function score (or HFS for short), was calculated for at least two haplotypes per individual, and then compared to various complex traits like height or bone density. Song et al. found that the HFS framework was better at finding links between genes and specific traits than existing methods. It also provided more information on the biology that may be underpinning these outcomes. Although more work is needed to reduce the computer processing times required to calculate the HFS, Song et al. believe that their new method has the potential to improve the way researchers identify links between genes and human traits.


Asunto(s)
Herencia Multifactorial , Sitios de Carácter Cuantitativo , Humanos , Haplotipos , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Fenotipo
4.
Nat Commun ; 15(1): 3238, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622117

RESUMEN

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the prediction of complex traits and diseases. However, most existing PRS are primarily trained on European ancestry populations, limiting their transferability to non-European populations. In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-wide association studies (GWAS) summary statistics from diverse populations to develop ancestry-specific PRS with improved predictive power for minority populations. The method uses a combination of L 1 (lasso) and L 2 (ridge) penalty functions, a parsimonious specification of the penalty parameters across populations, and an ensemble step to combine PRS generated across different penalty parameters. We evaluate the performance of PROSPER and other existing methods on large-scale simulated and real datasets, including those from 23andMe Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can substantially improve multi-ancestry polygenic prediction compared to alternative methods across a wide variety of genetic architectures. In real data analyses, for example, PROSPER increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, PROSPER is computationally highly scalable for the analysis of large SNP contents and many diverse populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Salud Poblacional , Humanos , Teorema de Bayes , Herencia Multifactorial/genética , Población Negra/genética , 60488 , Factores de Riesgo
6.
PLoS Biol ; 22(4): e3002511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603516

RESUMEN

A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the causal effects on an individual's phenotype of the alleles that they carry. However, estimates of direct effects can be subject to genetic and environmental confounding and can also absorb the "indirect" genetic effects of relatives' genotypes. Recently, an important development in controlling for these confounds has been the use of within-family GWASs, which, because of the randomness of mendelian segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects. Here, we present a general theoretical analysis of the influence of confounding in standard population-based and within-family GWASs. We show that, contrary to common interpretation, family-based estimates of direct effects can be biased by genetic confounding. In humans, such biases will often be small per-locus, but can be compounded when effect-size estimates are used in polygenic scores (PGSs). We illustrate the influence of genetic confounding on population- and family-based estimates of direct effects using models of assortative mating, population stratification, and stabilizing selection on GWAS traits. We further show how family-based estimates of indirect genetic effects, based on comparisons of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. We conclude that, while family-based studies have placed GWAS estimation on a more rigorous footing, they carry subtle issues of interpretation that arise from confounding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Genotipo , Fenotipo , Herencia Multifactorial/genética , Alelos , Polimorfismo de Nucleótido Simple/genética
7.
Cell Genom ; 4(4): 100539, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604127

RESUMEN

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.


Asunto(s)
Bivalvos , Herencia Multifactorial , Humanos , Animales , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo/métodos , Teorema de Bayes , Fenotipo , 60488
8.
Mol Ecol ; 33(9): e17344, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597332

RESUMEN

Body size variation is central in the evolution of life-history traits in amphibians, but the underlying genetic architecture of this complex trait is still largely unknown. Herein, we studied the genetic basis of body size and fecundity of the alternative morphotypes in a wild population of the Greek smooth newt (Lissotriton graecus). By combining a genome-wide association approach with linkage disequilibrium network analysis, we were able to identify clusters of highly correlated loci thus maximizing sequence data for downstream analysis. The putatively associated variants explained 12.8% to 44.5% of the total phenotypic variation in body size and were mapped to genes with functional roles in the regulation of gene expression and cell cycle processes. Our study is the first to provide insights into the genetic basis of complex traits in newts and provides a useful tool to identify loci potentially involved in fitness-related traits in small data sets from natural populations in non-model species.


Asunto(s)
Tamaño Corporal , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Herencia Multifactorial , Animales , Herencia Multifactorial/genética , Tamaño Corporal/genética , Salamandridae/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Genética de Población , Fertilidad/genética , Sitios de Carácter Cuantitativo
9.
Psychiatr Genet ; 34(2): 31-36, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441147

RESUMEN

Recent advancements in psychiatric genetics have sparked a lively debate on the opportunities and pitfalls of incorporating polygenic scores into clinical practice. Yet, several ethical concerns have been raised, casting doubt on whether further development and implementation of polygenic scores would be compatible with providing ethically responsible care. While these ethical issues warrant thoughtful consideration, it is equally important to recognize the unresolved need for guidance on heritability among patients and their families. Increasing the availability of genetic counseling services in psychiatry should be regarded as a first step toward meeting these needs. As a next step, future integration of novel genetic tools such as polygenic scores into genetic counseling may be a promising way to improve psychiatric counseling practice. By embedding the exploration of polygenic psychiatry into the supporting environment of genetic counseling, some of the previously identified ethical pitfalls may be prevented, and opportunities to bolster patient empowerment can be seized upon. To ensure an ethically responsible approach to psychiatric genetics, active collaboration with patients and their relatives is essential, accompanied by educational efforts to facilitate informed discussions between psychiatrists and patients.


Asunto(s)
Trastornos Mentales , Psiquiatría , Humanos , Trastornos Mentales/genética , 60475 , Herencia Multifactorial/genética , Atención Dirigida al Paciente
10.
Nat Med ; 30(4): 1065-1074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443691

RESUMEN

Type 2 diabetes (T2D) is a multifactorial disease with substantial genetic risk, for which the underlying biological mechanisms are not fully understood. In this study, we identified multi-ancestry T2D genetic clusters by analyzing genetic data from diverse populations in 37 published T2D genome-wide association studies representing more than 1.4 million individuals. We implemented soft clustering with 650 T2D-associated genetic variants and 110 T2D-related traits, capturing known and novel T2D clusters with distinct cardiometabolic trait associations across two independent biobanks representing diverse genetic ancestral populations (African, n = 21,906; Admixed American, n = 14,410; East Asian, n =2,422; European, n = 90,093; and South Asian, n = 1,262). The 12 genetic clusters were enriched for specific single-cell regulatory regions. Several of the polygenic scores derived from the clusters differed in distribution among ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a body mass index (BMI) of 30 kg m-2 in the European subpopulation and 24.2 (22.9-25.5) kg m-2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg m-2 in the East Asian group. Thus, these multi-ancestry T2D genetic clusters encompass a broader range of biological mechanisms and provide preliminary insights to explain ancestry-associated differences in T2D risk profiles.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Fenotipo , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética
11.
Cell Genom ; 4(4): 100523, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38508198

RESUMEN

Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10-5) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10-6) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10-7) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10-4). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.


Asunto(s)
Enfermedad de la Arteria Coronaria , Osteopatía , Humanos , Herencia Multifactorial/genética , 60488 , Benchmarking , Enfermedad de la Arteria Coronaria/diagnóstico
12.
Artículo en Inglés | MEDLINE | ID: mdl-38367896

RESUMEN

Mood disorders have a genetic and environmental component and interactions (GxE) on the risk of psychiatric diseases have been investigated. The same GxE interactions may affect wellbeing measures, which go beyond categorical diagnoses and reflect the health-disease continuum. We evaluated GxE effects in the UK Biobank, considering as outcomes subjective wellbeing (feeling good and functioning well) and objective measures (education and income). We estimated the polygenic risk scores (PRSs) of major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Stressful/traumatic events during adulthood or childhood were considered as E variables, as well as social support. The addition of the PRSxE interaction to PRS and E variables was tested in linear or multinomial regression models, adjusting for confounders. We included 33 k-380 k participants, depending on the variables considered. Most PRSs and E factors showed additive effects on outcomes, with effect sizes generally 3-5 times larger for E variables than PRSs. We found some interaction effects, particularly when considering recent stress, history of a long illness/disability/infirmity, and social support. Higher PRSs increased the negative effects of stress on wellbeing, but they also increased the positive effects of social support, with interaction effects particularly for the outcomes health satisfaction, loneliness, and income (p < Bonferroni corrected threshold of 1.92e-4). PRSxE terms usually added ∼0.01-0.02% variance explained to the corresponding additive model. PRSxE effects on wellbeing involve both positive and negative E factors. Despite small variance explained at the population level, preventive/therapeutic interventions that modify E factors could be beneficial at the individual level.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Adulto , Niño , Trastorno Depresivo Mayor/genética , 60488 , Bancos de Muestras Biológicas , 60682 , Herencia Multifactorial/genética , Factores de Riesgo
13.
Nat Commun ; 15(1): 1245, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336875

RESUMEN

It has been postulated that rare coding variants (RVs; MAF < 0.01) contribute to the "missing" heritability of complex traits. We developed a framework, the Rare variant heritability (RARity) estimator, to assess RV heritability (h2RV) without assuming a particular genetic architecture. We applied RARity to 31 complex traits in the UK Biobank (n = 167,348) and showed that gene-level RV aggregation suffers from 79% (95% CI: 68-93%) loss of h2RV. Using unaggregated variants, 27 traits had h2RV > 5%, with height having the highest h2RV at 21.9% (95% CI: 19.0-24.8%). The total heritability, including common and rare variants, recovered pedigree-based estimates for 11 traits. RARity can estimate gene-level h2RV, enabling the assessment of gene-level characteristics and revealing 11, previously unreported, gene-phenotype relationships. Finally, we demonstrated that in silico pathogenicity prediction (variant-level) and gene-level annotations do not generally enrich for RVs that over-contribute to complex trait variance, and thus, innovative methods are needed to predict RV functionality.


Asunto(s)
Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Herencia Multifactorial/genética , Fenotipo , Anotación de Secuencia Molecular , Estudio de Asociación del Genoma Completo , Modelos Genéticos
14.
Nature ; 627(8003): 347-357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374256

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Asunto(s)
Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Adipocitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/clasificación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/genética , Células Endoteliales/metabolismo , Células Enteroendocrinas , Epigenómica , Predisposición Genética a la Enfermedad/genética , Islotes Pancreáticos/metabolismo , Herencia Multifactorial/genética , Enfermedad Arterial Periférica/complicaciones , Enfermedad Arterial Periférica/genética , Análisis de la Célula Individual
16.
PLoS One ; 19(2): e0282212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358994

RESUMEN

Researchers often claim that sibling analysis can be used to separate causal genetic effects from the assortment of biases that contaminate most downstream genetic studies (e.g. polygenic score predictors). Indeed, typical results from sibling analysis show large (>50%) attenuations in the associations between polygenic scores and phenotypes compared to non-sibling analysis, consistent with researchers' expectations about bias reduction. This paper explores these expectations by using family (quad) data and simulations that include indirect genetic effect processes and evaluates the ability of sibling analysis to uncover direct genetic effects of polygenic scores. We find that sibling analysis, in general, fail to uncover direct genetic effects; indeed, these models have both upward and downward biases that are difficult to sign in typical data. When genetic nurture effects exist, sibling analysis creates "measurement error" that attenuates associations between polygenic scores and phenotypes. As the correlation between direct and indirect effect changes, this bias can increase or decrease. Our findings suggest that interpreting results from sibling analysis aimed at uncovering direct genetic effects should be treated with caution.


Asunto(s)
Herencia Multifactorial , Hermanos , Humanos , Fenotipo , Herencia Multifactorial/genética , Sesgo
17.
Nature ; 625(7994): 312-320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200293

RESUMEN

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Asunto(s)
Asiático , Pueblo Europeo , Genoma Humano , Selección Genética , Humanos , Afecto , Agricultura/historia , Alelos , Enfermedad de Alzheimer/genética , Asia/etnología , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnología , Pueblo Europeo/genética , Agricultores/historia , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Historia Antigua , Migración Humana , Caza/historia , Familia de Multigenes/genética , Fenotipo , 60682 , Herencia Multifactorial/genética
18.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190104

RESUMEN

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/diagnóstico , Tasa de Filtración Glomerular/genética , Herencia Multifactorial/genética , Riñón/fisiología
19.
Nat Commun ; 15(1): 24, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169469

RESUMEN

Various polygenic risk scores (PRS) methods have been proposed to combine the estimated effects of single nucleotide polymorphisms (SNPs) to predict genetic risks for common diseases, using data collected from genome-wide association studies (GWAS). Some methods require external individual-level GWAS dataset for parameter tuning, posing privacy and security-related concerns. Leaving out partial data for parameter tuning can also reduce model prediction accuracy. In this article, we propose PRStuning, a method that tunes parameters for different PRS methods using GWAS summary statistics from the training data. PRStuning predicts the PRS performance with different parameters, and then selects the best-performing parameters. Because directly using training data effects tends to overestimate the performance in the testing data, we adopt an empirical Bayes approach to shrinking the predicted performance in accordance with the genetic architecture of the disease. Extensive simulations and real data applications demonstrate PRStuning's accuracy across PRS methods and parameters.


Asunto(s)
60488 , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Teorema de Bayes , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
20.
Int J Med Inform ; 183: 105333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184939

RESUMEN

BACKGROUND: Polygenic risk scores (PRS) are a powerful tool for predicting an individual's genetic risk for complex diseases. METHODS: We have developed a web service (PRScomp) as a user-friendly tool to evaluate PRS of the user own population and compare it with worldwide populations. RESULTS: A disease/trait database has been constructed from GWAS Catalog summary statistics. Genotype data of test population is uploaded and merged with the reference dataset (1000 Genome Project and Human Genome Diversity Project) to obtain a file including the common SNPs. The user can select a disease/trait from the database and a curated set of risk markers is used to calculate summatory PRS. Distribution of z-scored PRS values is presented in publication-ready plots and text files that can be downloaded. DISCUSSION: PRScomp can be useful for public health decision-making by identifying population-specific genetic risk factors and informing the development of targeted interventions for at-risk populations.


Asunto(s)
60488 , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Fenotipo , Predisposición Genética a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...